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the thermal gauge theory expressed in terms of suitable order parameters. We consider

a class of confining gauge theories whose effective Lagrangian turns out to be a generic

1 dim. unitary matrix model. The dynamics of this matrix model can be studied by

an exact mapping to a non-relativistic many fermion problem on a circle. We present

an approximate solution to the equations of motion which corresponds to the motion (in

Euclidean time) of the Fermi surface interpolating between the phase where the fermions

are uniformly distributed on the circle (confinement phase) and the phase where the fermion

distribution has a gap on the circle (deconfinement phase). We later self-consistently verify

that the approximation is a good one. We discuss some properties and implications of the

solution including the surface tension which turns out to be positive. As a by product of

our investigation we point out the problem of obtaining time dependent solutions in the

collective field theory formalism due to generic shock formation.

Keywords: Black Holes in String Theory, AdS-CFT Correspondence, Confinement, 1/N

Expansion.

c© SISSA 2007 http://jhep.sissa.it/archive/papers/jhep012007003/jhep012007003.pdf

mailto:pallab@theory.tifr.res.in
mailto:bobby@theory.tifr.res.in
mailto:wadia@theory.tifr.res.in
http://jhep.sissa.it/stdsearch
http://jhep.sissa.it/stdsearch


J
H
E
P
0
1
(
2
0
0
7
)
0
0
3

Contents

1. Introduction 1

2. Plasma ball in the large N gauge theory and dual black holes 4

3. Gauge theories on R2 × S1
τ × S1

θ 5

3.1 Effective action in terms of the Polyakov lines and Wilson loops 5

4. Analysis of the one dimensional matrix model 7

4.1 Spatially uniform solutions 9

4.2 Spatially non-uniform solutions: plasma kinks 11

4.3 Localized soliton- plasma ball 15

5. Conclusion 17

A. Analysis of the clumping in the eigenvalue distribution in finite time 18

B. Shock formation in the collective field equations and folds on the Fermi

surface 18

1. Introduction

The study of black holes using the AdS/CFT was initiated by Witten’s observations that

black hole spacetimes in AdS5 are holographic duals of the deconfinement phase of the four

dimensional SU(N) gauge theory on the boundary of AdS5 [1]. Various subsequent studies

explored this connection to discuss the dynamics and phases of the gauge theory and the

physics of black holes [2] -[29].

In a recent paper [15] two of us (PB, SRW) discussed the small Schwarzschild blackhole-

string transition in AdS5 × S5 by relating it in the gauge theory to the large N [32, 33]

transition, and its smoothening by non-perturbative effects. An important feature of study-

ing the Schwarzschild blackhole in AdS5 × S5 is that the blackhole is uniformly spread on

the S3 at the boundary where the gauge theory lives. This is consistent with the fact that

the scale invariance of the dual gauge theory is broken only by thermal boundary condi-

tions. Consequently one can discuss the blackhole-string transition in terms of a unitary

matrix model, where the unitary matrix (the thermal order parameter) is uniformly spread

over S3.

In this work we would like to focus on confining gauge theories which have two length

scales: the confinement scale Λ and the temperature T = β−1. The relevant order parame-

ters in such theories have a spatial variation on the scale of Λ−1. The gravity duals of these
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theories have blackhole solutions which are localized on the boundary. It has been argued

in [26, 14], that their holographic dual corresponds, in the large N limit, to a localised

region of the deconfinement phase. This object has been called the plasma ball in [14], and

it has a mass and a lifetime of o(N2). A qualitative gauge theory discussion in [14] uses a

balancing of positive surface tension and negative pressure inside the plasma ball, to argue

for its existence.

There is no doubt that it is important to study the plasma ball and its dynamics. Be-

sides its utility for the physics of gauge theories at finite temperature, it is one more concrete

laboratory for testing and studying various conundrums presented by blackholes [30]. The

fact that the blackhole dual is localized on the boundary provides a greater handle on

studying the horizon and what lies behind it.

Before we begin to make headway into an understanding of these problems, we need to

have a dynamical handle on the plasma ball in the gauge theory. This is a standard hard

strong coupling problem. Here by strong coupling we mean large t’ Hooft coupling λ =

Ng2
YM. One natural strategy is to use numerical techniques. However a direct numerical

approach is also difficult without developing a formalism within which we can ask the right

questions.

We present a partial answer to this question in this work. We will discuss the plasma

ball as a large N soliton which can be discussed in terms of various order parameters

which distinguish between the confinement or deconfinement phases of the gauge theory.

In order to do a concrete calculation we will focus on a concrete model that was discussed

in [14] in which an interpolating solution was found between two bulk solutions of type

IIB string theory: the AdS soliton [4] and a blackbrane. Both solutions are asymptotically

R2 ×S1
τ ×S1

θ , where S1
τ is the thermal circle of radius β and S1

θ is a Scherk-Schwarz spatial

circle of radius 2π. The corresponding gauge theory is a Scherk-Schwarz compactification of

N = 4 SU(N) gauge theory, on R2 × S1
τ × S1

θ . The relevant and natural order parameters

of this gauge theory are the holonomies of the gauge field around S1
τ × S1

θ . In fact for

technical reasons we will compactify R2 to a Scherk-Schwarz cylinder, so that the Euclidean

spacetime of the gauge theory is R1 ×S1
τ ×S1

θ ×S1
α. The radius of S1

α is chosen larger than

that of the S1
τ and S1

θ .1

We discuss the effective action of the gauge theory in the long wavelength expansion

defined by the confinement scale Λ. The effective action, in the axial gauge along the

non-compact direction x, is a one dimensional model of three unitary matrices U(x), V (x)

and W (x) corresponding to the zero modes of the Wilson loops on S1
τ × S1

θ × S1
α. Using

the fact that we are working with a confining gauge theory of adjoint fields which are all

short ranged (of the order of Λ−1) one can integrate out V(x) and W(x) to arrive at an

effective action involving the single unitary matrix U(x), which has the general form

S = Λ−1

∫ ∞

−∞

dxf(U)tr(∂xU∂xU †) + g(U) (1.1)

where Λ−1 is the confinement scale, and f(U) and g(U) are gauge invariant functions

1This additional compactification of the boundary does not disturb the bulk solution
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of U . f(U) and g(U) contain the information that the gauge theory has a first order

confinement/deconfinement phase transition.

It is possible to discuss soliton solutions of the general multi-trace model using the

Hamiltonian formulation together with the method of dealing with multi-trace operators

developed in [15]. However in order to exhibit a solution we simplify the effective action

even further and present the soliton (plasma kink) solution. It turns out to be the motion

of the Fermi surface of the many fermion problem that is equivalent to the matrix model

in the SU(N) invariant sector. This solution interpolates between the confinement and

deconfinement phases and has energy density peaked at the phase boundary.

In our investigations we realized that it is imperative to use the 2+1 dimensional phase

space formulation of the classical Fermi fluid theory. The collective field formalism, which

is a hydrodynamical description in 1 + 1 dimensions inevitably leads to shock formation

and singularities. It is not clear whether a finite energy density soliton solution can be

obtained within collective field theory. The shocks are spurious singularities due to the

collective field description which correspond to the folds on the Fermi surface, which are

inevitable.

The plan of the paper is as follows. In section 2 we describe the two bulk geometries-

the AdS soliton [4] and the black brane solution, for which an interpolating domain wall

solution was constructed in [14]. In section 3, we present a qualitative discussion as to

how one can arrive at an effective description of the thermal gauge theory in terms of

the holonomy matrices around the various cycles of the boundary, starting from a four

dimensional gauge theory compactified on Scherk-Schwarz circles. For technical reasons

we will be working with a gauge theory compactified on two Scherk-Schwarz circles. One

can have two dual effective descriptions, in terms of either the Polyakov line or the Wilson

loop over the spatial cycle. We present the general class of such effective matrix models. In

the following sections we will be working with a particular matrix model belonging to this

class. This model can be discussed in terms of an exact fermionic description [31, 33 – 38].

We shall also discuss the collective field equations [39] and indicate that their solution

develops shocks in finite time.

In section 4 we discuss the phase structure of the model. This model has two stable

phases: the confined and deconfined phases, and it undergoes a first order phase transition

at a particular temperature. Later in the section we construct the soliton (kink) solution

which interpolates between the two phases at the phase transition temperature. We then

discuss some of the properties of the solution, in particular the surface tension of the

soliton is discussed. We also present the localised (in one dimension) soliton solution at

temperatures greater than the phase transition temperature, which approaches the confined

phase in the two ends, and discuss some of it’s properties.

In appendix A we show that starting from the confined phase of the theory, where the

density of eigenvalues of the Polyakov line is uniform, we reach the clumped eigenvalue

distribution only asymptotically, and never in any finite time. In appendix B we discuss

the relation of the shocks formed in the collective field theory description to the formation

of folds in the Fermi description.
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2. Plasma ball in the large N gauge theory and dual black holes

A plasma ball is a localized spherically symmetric bubble of the deconfining phase of a

confining gauge theory. In [14] using the AdS/CFT correspondence, their existence was

inferred by exhibiting a bulk solution that interpolates between the AdS Soliton [4] and

the black-brane solution. The AdS soliton (AdSS), is given by the metric,

ds2 = L2α
′

(

e+2u(dτ2 + T2πdθ2 + dω2
i ) +

1

T2π(u)
du2

)

(2.1)

where,

T2π(u) = 1 −
(

1

2
(d + 1)eu

)−(d+1)

(2.2)

In this paper we will be working with d = 3. The coordinate θ is periodic with periodicity

2π, and τ is the angular coordinate along the thermal circle of the Euclidean theory, with

periodicity τ → τ + β, and the ωi are the two non-compact coordinates, while u is the

radial coordinate. The boundary topology is R2×S1
τ ×S1

θ , where S1
τ and S1

θ are the thermal

and spatial cycles respectively. From the expression for T2π, one sees that the spatial circle

shrinks to zero size at a finite value of u.

The black-brane (BB) geometry is given by the metric

ds2 = L2α
′

(

e+2u(Tβdτ2 + dθ2 + dω2
i ) +

1

Tβ(u)
du2

)

(2.3)

with Tβ(u) = 1 − ( β
4π

(d + 1)eu)−(d+1). This metric continued to Lorentzian signature has

a horizon. Notice that when β = 2π, the two metrics 2.1 and 2.3 are simply obtained from

one other by interchanging the thermal circle with the spatial circle. Since geometrically

there is no difference between the two, the free energy of the two configurations must be the

same at this temperature. For β < 2π, the free energy of the BB geometry dominates the

path integral while for β > 2π, the free energy of the AdSS geometry is dominant. In [14]

a domain wall solution which interpolates between these two solutions was constructed.

Clearly such a domain wall solution exists only for β = 2π when the free energy of the two

phases is equal. The domain wall is independent of one of the non-compact direction and

in the other non-compact direction the BB and AdSS geometry are asymptotically reached

at the two ends.

These solutions can be incorporated within the IIB string theory by compactifying

on S5, with the five-form RR flux turned on. This would then have a dual boundary

description in terms of the Scherk-Schwartz compactification of the N = 4 SU(N) SYM

theory on a spatial cycle, with thermal boundary condition on both the cycle S1
τ and S1

θ .

The gauge theory lives on R2 × S1
τ × S1

θ . At β = 2π clearly the two circles are identical

and can be interchanged.

The above discussion suggests that a ball of large but finite radius of the deconfined

plasma can occur as a solution to the finite temperature effective action of the gauge theory,

at a temperature slightly above Tc. At T = Tc there exists a kink solution interpolating

between the confined and deconfined phases.
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3. Gauge theories on R2 × S1
τ × S1

θ

From the AdS/CFT correspondence, these bulk geometries- the AdSS geometry and the BB

geometry correspond in the thermal gauge theory to the confinement and deconfinement

phases respectively [1]. These phases are characterised by the expectation value of the

Polyakov line, which is the trace of the holonomy around the thermal circle,

U(w1, w2, θ) = P exp

(

−
∮

Aτdτ

)

(3.1)

wi are the two non-compact coordinates and the θ is the angular coordinate along the

spatial circle, while P denotes path ordering. In particular, the expectation value of tr U

vanishes in the confined phase while in the deconfined phase it takes a non-zero value.2

Similarly one can define the holonomy around the spatial cycle S1
θ .

V (w1, w2, τ) = P exp

(

−
∮

Aθdθ

)

(3.2)

Since the role of the two circles are interchanged in the two bulk geometries, it follows from

the AdS/CFT correspondence, that trV = 0 in the deconfined phase, and it is non-zero

in the confined phase.3 At β = 2π, because the two geometries are identical under the

interchange of the thermal and spatial circles, the effective action in terms of V should be

identical to the one in terms of U . Later in this section we will qualitatively argue as to

how one can arrive at an effective action in terms of both U and V and then in terms of

either U or V , starting from the four-dimensional gauge theory.

Since we will mainly be interested in the solution which interpolates between the

confinement and deconfinement phases as a function of one of the non-compact direction, it

should be possible to find the one dimensional kink solution in an effective one-dimensional

unitary matrix model. In order to realize this in a gauge theory at large N , it turns out to

be convenient to work with R × S1
τ × S1

θ × S1
α, where the S1

α is the spatial circle, obtained

by compactifying a noncompact direction previously labelled by the coordinate w2. We

introduce the holonomy along the spatial cycle S1
α

W (w1, τ, θ) = P exp

(

−
∮

Aαdα

)

(3.3)

This would correspond to replacing one of the non-compact directions of the bulk geometry

that we discussed earlier, with a circle without changing the solution. Henceforth we shall

set the noncompact direction w1 ≡ x.

3.1 Effective action in terms of the Polyakov lines and Wilson loops

The bosonic part of the action of the general gauge theory will be written in terms of the

gauge degrees of freedom A1, Aτ , Aθ, Aα as well as the scalar fields Φi which transform

2This basically reflects the fact that a quark in the fundamental representation of SU(N) has infinite

free energy in the confining phase and finite free energy in the deconfined phase
3This reflects a gluon condensate in the vacuum of the gauge theory [40].
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in the adjoint representation. Here A1 corresponds to the gauge field in the non-compact

direction and we can choose the axial gauge A1 = 0. These fields are in general functions of

(x, θ, τ, α). Since the Scherk-Schwarz compactification breaks supersymmetry, the fermions

are massive and the scalar fields get mass at one loop from quantum corrections. They

can therefore be integrated out from the quantum effective action. Fourier expanding the

gauge fields in all the circles and integrating out all the higher KK modes around every

circle, we get a effective theory in terms of the zero modes of the fields: A0
τ (x), A0

θ(x),

A0
α(x).

This effective theory in terms of the zero modes is gauge invariant, and therefore we

should be able to write it down in terms of the zero modes of the the holonomy matrices

U ,V and W . From now on we will use the notation U , V , W , to denote the zero modes of

the above holonomy matrices.

The effective action will be a function of all possible gauge invariant operators. The

gauge invariant operators are constructed out of the ZN invariant products of the polyno-

mials of U , V and W and their covariant derivatives, DxU , DxV , DxW , and are of the

form Πitr(U
liV miW pi(DxU)ni . . .), where the exponents li, mi, pi, ni,etc are integers, such

that the sum of all the exponents
∑

i li + mi + pi + ni + . . . = 0. In the gauge A1 = 0,

the covariant derivatives are the same as the ordinary derivatives. At sufficiently long

wavelengths we neglect the higher derivative terms which are suppressed by powers of the

confining scale Λ−1.

Depending on which of the holonomy matrices condense, there will be three phases

in the gauge theory. In the BB phase trU 6= 0, trV = 0 and trW = 0. In the other two

phases one of the spatial holonomy matrices V or W will get expectation values, while the

expectation value for the other two vanish. However we are interested in an interpolating

solution between the black brane and the AdS soliton, and not in the transitions involving

all the three cycles. If we choose the radius R(S
1
α) > R(S1

τ ), R(S1
θ ), at the temperature

of interest, then from the supergravity solution it follows that the cycle S1
α never shrinks

and corresponds to 〈W 〉 = 0 in the gauge theory. We can therefore put W = 0 in the

effective three matrix model to once again obtain a two matrix model. The action for this

will in general be very complicated, with all terms that are allowed by gauge invariance. It

will contain words of the type tr(Un1V n2Un3 . . . .), and also derivative terms. The general

action in the long wavelength expansion will be of the form,

Seff = Λ−1

∫

dxf1(U, V )tr|∂xU |2 + f2(U, V )tr|∂xV |2 + (3.4)

f3(U, V )tr(∂xU∂xV †) + f4(U, V ) + h.c

where, Λ−1 is the confinement length scale, fi’s are gauge invariant functions of arbitrary

polynomials of U , V and β with appropriate factors of N . At β = 1/2π, when the size of

the two cycles are equal, the effective action will be invariant under U ⇒ V . Integrating

over either the U or the V we will get a single matrix model in terms of V or the U matrix.

Since the theory is confining and has a mass gap, we can integrate out the V matrix,

– 6 –
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without worrying about infrared divergences, and we will be left with a model, given by

S = Λ−1

∫

dxf(U)tr(∂xU∂xU †) + g(U) (3.5)

where again Λ−1 is the confinement scale, and f(U) and g(U) are temperature dependent,

gauge invariant functions. As in (3.4) we have neglected all the higher derivative terms in

the action, which are suppressed by powers of the confining scale. Equivalently we could

integrate out U to arrive at a matrix model of V .

In the sequel we will mainly study the soliton solution of the simplest of this class of

models, given by4

S = Λ−1

∫

dxNtr(|∂xU |2) + ξ|trU |2. (3.6)

Here we will assume that ξ > 0 which ensures the existence of a first order phase transition

at some value of ξ. By rescaling x → Λ−1x, we can remove the explicit Λ dependence from

the above action to get,

S =

∫

dxNtr(|∂xU |2) + ξ|trU |2 (3.7)

where x is now given in units of Λ−1. Hence forth we will be using this form of the action.5

4. Analysis of the one dimensional matrix model

In this section we will analyze the phase diagram of the unitary matrix model given by the

action of the form (3.6). The matrix model described by the action(3.6) can be discussed

using two methods. One is to use the collective field theory techniques as was done by

Jevicki and Sakita [39]. This is basically a collective field description in 1 + 1 dimension.

The Hamiltonian is written in terms of the density ρ(θ, x) and velocity v(θ, x) = ∂θΠ(θ, x),

where Π is the canonical conjugate of ρ. The ρ(θ, x) field is the eigenvalue density field

constructed out of the matrix U ,

ρ(θ, x) =

+∞
∑

n=−∞

ρn(x)e2iπnθ (4.1)

where ρn = 1
N

tr(Un). For example, from the matrix model described by equation (3.6),

we get the following collective field Hamiltonian,

Hcf =

∫

dθ

(

ρv2

2
+

π2ρ3

6

)

− ξ|ρ1|2 (4.2)

This Hamiltonian, gives rise to the following set of fluid dynamical equations,

∂ρ(x, θ)

∂x
+

∂

∂θ
(ρ(x, θ)v(x, θ)) = 0 (4.3)

∂v(x, θ)

∂x
+ v(x, θ)

∂v(x, θ)

∂θ
+ π2ρ(x, θ)

∂ρ(x, θ)

∂θ
= −2ξρ1(x) sin θ

4This model has previously appeared in the discussion of 1+1 dimensional gauge theories [41]
5Therefore all the quantities we calculate later in the text like the surface tension of the phase boundary

of the soliton, for example, will be given in units of the confinement scale.
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Here θ is a periodic variable defined in the range [−π, π] and x is a variable defined in

the range (−∞,+∞). The collective field approach is only valid for solutions which are

spatially uniform,(for which v(x, θ) = 0 and ∂
∂x

ρ(x, θ) = 0). The spatially non-uniform

solutions generically develop shocks in finite time, after which the collective field equations

are not valid.6

A correct (and exact) way to analyze the model (3.6) is to rewrite the model as a theory

of interacting fermions [36] with the Hamiltonian (where the ’x’ direction is identified with

the Euclidean time).

H =

∫

dθψ†(θ)∂2
θψ(θ) − ξ|

∫

dθeiθψ(θ)ψ†(θ)|2 (4.4)

In the large N limit the fermion system will be classical and one can use the phase

space density, U(p, θ, x) such that,

∫

dp

2π
dθ U(p, θ, x) = 1 (4.5)

If a phase space cell is occupied then U(p, θ, x) = 1 or else U(p, θ, x) = 0. Hence U(p, θ, x)

satisfies the relation7

U(p, θ, x)2 = U(p, θ, x) (4.6)

The Hamiltonian written in terms of the phase space density is,

H

N2
=

∫

dpdθ
p2

2
U(p, θ, x) − ξ|

∫

dpdθeiθU(p, θ, x)|2 (4.7)

In terms of U(p, θ, x), the density and velocity ρ(θ, x) and v(θ, x) are,

ρ(θ, x) =

∫

dp

2π
U(p, θ, x), v(θ, x) =

1

ρ

∫

dp

2π
p U(p, θ, x) (4.8)

In the appendix we will further discuss the relation between the phase space and

collective field theory approach and we will interpret the shock formation as the formation

of folds on the Fermi surface. Hence the shock singularities are artifacts of the collective

field approach and are resolved by a more accurate treatment.

In the following sections we will analyze the solutions of the fermionic Hamilto-

nian (4.7). We will start by describing the spatially uniform solution (phases of the theory)

and then describe the non-uniform interpolating solution (plasma kink).

6As discussed in more detail in appendix B, this phenomenon can be understood from the underlying

fermionic theory. Infact if we change x → ix and v → −iv in equation (4.3), we get the inviscid Burgers

equation with a source term. In [44], it has been shown, using the method of hodograph transformation,

that the source free version of the Burgers equation develops shock in finite time.
7The relation (4.6) is true only at large N . At finite N , U satisfies the relation, U ∗ U ≡ cos 1

2N
(∂θ∂p′ −

∂p∂θ′)[U(p, θ)U(p′, θ′)]|p′=p,θ′=θ = U [38], which reduces to equation (4.6) at large N .
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4.1 Spatially uniform solutions

Here we analyze those solutions where the density of the eigenvalues of the matrix U is

uniform over the direction x. In this case the location of the Fermi level will also be constant

in x. Classically ρ can always be chosen to be an even function of θ. Then the potential in

the equation (4.7) becomes, ξ(
∫

dp dθ
2π

cos θU(p, θ, x))2. In the Hatree Fock approximation,

the phase space evolution equation for a single particle is,

θ̇ = p (4.9)

ṗ = −2ξρ1(x) sin θ

Where ρ1(x) =
∫

dp dθ
2π

cos θU(p, θ, x) and θ̇ ≡ d
dx

θ, ṗ ≡ d
dx

p. For a spatially uniform

solution, ρ1 is independent of x and we can integrate the above equations to get,

p2 = 2(E + 2ξρ1 cos θ) (4.10)

where E is the energy of the particle. Therefore for a particle on the Fermi level, we have,

p̂± = ±
√

2(Ef + 2ξρ1 cos θ) (4.11)

where p̂± correspond to the upper and lower branches of the Fermi level. Consequently

ρ(θ) =

√
2

π

√

Ef + 2ξρ1 cos θ. (4.12)

One has to satisfy the normalization condition given in equation (4.5) and the self consis-

tency condition for ρ1, which effectively solves Ef in terms of ξ and ρ1

∫

dθ

√
2

π

√

Ef + 2ξρ1 cos θ = 1 (4.13)

∫

dθ

√
2

π
cos θ

√

Ef + 2ξρ1 cos θ = ρ1

Depending on whether | Ef

2ξρ1
| < 1 or | Ef

2ξρ1
| ≥ 1, the integrals in equation(4.13) will be

evaluated between the limits [−θ0, θ0], with θ0 < π, or over the full range [−π,+π]. The

former case corresponds to the gapped phase, as ρ(θ) = 0 outside[−θ0, θ0].), while the latter

case corresponds to the ungapped phase) [33].

One can study the different static phases of the model, by solving the self-consistency

and the normalization conditions given in equation (4.13) simultaneously. This is hard to

do analytically, but can be studied numerically. However it would be useful to have an

understanding of the various phases as extrema of the potential in terms of ρ. This potential

can be obtained from the Hamiltonian given in equation (4.7), using equations (4.8), (4.11)

to integrate over p. We then obtain,

H =

∫

dθ
1

2
ρv2 + V ([ρ]) (4.14)
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where,

V ([ρ]) =

∫

dθ
π2ρ3

6
− ξ|ρ1|2 (4.15)

The potential of the model is actually a function of the infinitely many Fourier modes

of ρ. Note that the static phases are all of the form given by the equation (4.12). It is

therefore useful to parametrize ρ by

ρ =

√

√

√

√

∞
∑

n=0

an cos(nθ) (4.16)

With this parametrization, the uniform phase solution is given by a0 = 1
2π

, and all other

an = 0, while the gapped phase corresponds to an = 0, for n > 1 and a0, a1 taking

appropriate values. With this parametrization, the potential will be a function of the an.

Since all the phases of the theory lie in the plane given by an>1 = 0, it will be enough to

restrict to this plane. We therefore parametrize p̂± by the following form.

p̂± = ±
√

2(E + 2ξC1 cos θ) (4.17)

We determine E in terms of C1 by the normalization condition (4.5). Then substituting

this in the expression for the potential, the potential becomes a function of only one

parameter C1. Then we can numerically calculate the potential given by the equation(4.15)

as a function of C1 (see figure 1).

We now summarise the key points from our analysis of the phase structure of the model

in consideration.

– 10 –
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Figure 2: A schematic picture of the Fermi levels.

• At low enough values of ξ, there is a single phase where ρ(θ) = 1
2π

or p̂± = ±1
2 . Here

C1 = 0. This is the uniform phase of the eigenvalue distribution.

• At ξ = ξn = 0.227 there is nucleation of two phases for which ρ(θ) is no more a

constant. Both the phases have a gapped eigenvalue distribution. One phase is

unstable (II) and the other is stable (III).

• The first order phase transition between the phase I and phase III occurs at ξ =

ξ1 = 0.237 and C1 = 0.4408, E = 0.1711.

• The phase I becomes locally unstable at ξ = ξ2 = .25

• At ξ = ξ3 = 0.23125, and C1 = 0.3336, phase II has a gapped to ungapped transition,

this is the point of the third order GWW phase transition. [32, 33]

4.2 Spatially non-uniform solutions: plasma kinks

In the previous section we have analyzed the phase structure of our model. In particular we

saw that at ξ = 0.237, the two stable phases (the confining and the deconfining phases) of

the model have the same free energy. In this section we will first describe an interpolating

domain wall type solution from the deconfined phase to the confining phase, at this value

of ξ. Later in the section we will also construct a localised soliton solution which reaches

the confined phase for large values of |x|.
The confining phase is described by a constant Fermi level which is given by the

following equations in phase space,

p̂± = ±1

2
(4.18)

While in the deconfining phase, the Fermi levels were given by,

p̂± = ±
√

2(E + 2ξC1 cos θ) (4.19)

Therefore we are looking for solutions in which the Fermi level evolves from (4.18) to (4.19).

In terms of the geometry of the Fermi level it is a evolution from a band like to an ellipsoidal

structure figure 2.

In terms of ρ, the solution has the property,

ρ(θ, x) → 1

2π
, x → −∞ (4.20)

ρ(θ, x) →
√

2

π

√

E + 2ξρ1 cos θ, x → ∞
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Now in general the Fermi level will be described by the vanishing of some implicit

function f(θ, p, x) = 0. In the static case,

f(p, θ) ≡ (p+ −
√

E + 2ξC1 cos θ)(p− +
√

E + 2ξC1 cos θ) = 0 (4.21)

In the general case f(p, θ, x) is not of this simple form and may have more roots. This

corresponds to the case where the upper and lower Fermi levels develop folds and become

multi-valued in θ.8

As each point in the phase space satisfies the equation, θ̇ = p, ṗ = V ′(θ), one can derive

the time evolution of the function f to be,

∂xf + p∂θf + V ′(θ)∂pf = 0 (4.22)

It would be interesting to try and solve the above equations numerically as a boundary

value problem. We have not been able to do this. Instead we take a variational approach

to the problem, and make a simple but reasonably accurate ansatz for the Fermi level. We

will now summarise the main steps of the analysis.

• We choose an ansatz for the Fermi level similar to the form in the static case,

f(p, θ, x) ≡ (p+ − ρ(θ, x) + v(θ, x))(p− + ρ(θ, x) + v(θ, x)) = 0 (4.23)

with ρ given by,

ρ =

√
2

π

√

E(x) + 2ξC1(x) cos θ (4.24)

where the E(x), C1(x) are functions of x. This would be a good approximation if

the E(x), C1(x) are slowly varying functions of x. What we are doing in effect is

to approximate the actual solution by a two Fermi surface solution throughout the

evolution of the system, always given by the two curves p = p̂±. Therefore p̂± are of

the form,

p̂± = ±
√

2
√

E(x) + 2ξC1(x) cos θ + v(θ, x) (4.25)

E(x) is determined in terms of C1(x) by the condition (4.5) or equivalently

∫

dθ

√
2

π

√

E(x) + 2ξC1(x) cos θ = 1

We determine v(θ, x) by the continuity equation,

d

dx

∫

U(p, θ, x)dp
dθ

2π
= 0 (4.26)

The solution of the continuity equation is given by,

v(θ, x) =
1

ρ(θ, x)

(

∂

∂x

∫ θ

0
dθρ(θ̃, x)dθ̃

)

(4.27)

8In fact as is shown in appendix B the folds are inevitably formed no matter what Fermi level configu-

ration one starts with.
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Figure 3: Plot of C1(x) (green), ρ(x) (red) and free energy density (blue, not in scale)

• Next, substituting this form of ρ(θ, x) and v(θ, x) back into the Hamiltonian and

performing the θ integral, we get,

H = C ′
1
2
K(C1) − V (C1) (4.28)

where C ′
1 = d

dx
C1(x). Hence the whole problem is reduced to a quantum mechani-

cal problem of C1(x). The function K(C1) and V (C1) are determined numerically,

and K(C1) is positive and non-zero. Along the propagation in x the quantity H is

conserved. This conservation law is used to determine the relation,

d

dx
C1 =

√

E + V (C1)

K(C1)
(4.29)

• The above equation is integrated numerically to obtain C1(x) as a function of x.

Knowing C1(x) enables us to determine the phase space density U(p, θ, x). The plot

of C1(x) as a function of x is shown in figure 3. It should be noted that the soliton rises

slowly but approaches the other end relatively fast. This follows from the asymmetric

nature of the potential.

• It is important to check for the self consistency of this ansatz. This can be done by

substituting the ρ1(x) obtained from our ansatz into the single particle equations and

see how they evolve in x under this ρ1. One can then compute the ρ1(x) obtained

from this exact evolution at each instance of x, which we denote by ρa
1(x) and compare

with ρ1(x) obtained from the ansatz. If ρ1(x) were an exact solution, then one would

get ρa
1(x) = ρ1(x). This is checked numerically. We started with 50 × 50 particles

uniformly distributed over the phase space region p ∈ [−1
2 , 1

2 ], θ ∈ [0, 2π]. This gives

us the band like Fermi level in figure 2. We study the evolution of the individual
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1
(x) (green) and ρ1(x) (red) with x

particles under the driving force 2ξρ1(x) and calculate the ρa
1(x) from the phase space

distribution of the particles. We present the plots comparing the two values of ρ1(x),

in figure 4.

• One may also look at the snapshots of the phase space particles. In figures 9 and 10

we have presented two snapshots taken at x ≈ 11.9 and at x ≈ 11.6. We see from the

plots that the system is driven to the gapped phase configuration to a good accuracy.

The phase space snapshot at the later value of x matches very well with the expected

Fermi distribution in phase III at ξ = 0.237. This means that we are indeed reaching

very near to the phase III.

We also find that during the evolution of the Fermi sea, folds are formed on the Fermi

level. As we discuss in the appendix B this is inevitable. However the area under

the folds is a small fraction of the area of the full Fermi surface. This shows that our

ansatz of a Fermi level with no folds, is self-consistent.

One also sees from the phase space plots that, as discussed in appendix A, ρ(0, x) 6= 0

for all x.

• If we continue to plot the evolution of the phase space particles for long times, we will

see that the value of ρa
1(x) will start falling from it’s value in the gapped phase, and the

particles will disperse away from the ellipsoid as the system will move away from the

gapped phase. This happens because even though the ρ1 we obtain from our ansatz

drives the system very near to the gapped phase starting from the uniform phase (as

is evident from the phase space plots), it does not take it exactly to the gapped phase,

since no matter how good the ansatz is it is not the exact solution.footnoteThis is

clear since in the correct solution folds are always formed no matter how small. If we
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continue to the evolve the system this error will start accumulating and the system

will again disperse away from the gapped phase. This problem would not occur if

we could do the exact numerical simulation for the soliton in the phase space as a

boundary value problem with value of ρa
1(x) fixed at both ends.

An important quantity that we can determine from our solution is the surface tension.

The surface tension in general could either be positive or negative at the phase boundary.

However, for lagrangians with positive kinetic terms, which is true in our case, the surface

tension also turns out to be positive.

In one dimension surface tension is defined as the total free energy of the soliton, which

in turn is the total action for the soliton. Hence the surface tension σ is, (see [42])

σ = 2

∫ +∞

−∞

dx (V (C1(x)) − Vvacuum) (4.30)

This quantity at ξ = ξ1 = 0.237 is numerically calculated to be, σ = 0.0027.

4.3 Localized soliton- plasma ball

In the previous section we constructed an interpolating kink solution for ξ = ξ1. For ξ

between ξ1 and ξ2, the two minima corresponding to phase I and phase III have different

free energies (figure 1) and in particular, the minima corresponding to phase I(C1 = 0)

is a false vacuum. In this case there exists a soliton solution which is localized in the x

direction, and which goes to C1 = 0 at both x → ±∞ [43].

Such a solution has a simple interpretation in terms of a particle in real time moving

in a potential −V (x). From the conservation of the Hamiltonian (4.28), it is obvious that

if we start from C1 = 0 at x = 0, the solution never reaches phase III. It will bounces

from a finite value of Cb and comes back to the phase I again, where Cb is determined by

the relation V (Cb) = V (0). In figure 5 we present a schematic plot of −V (C1) and the

bounce solution.

As before, one can construct such a solution numerically (see figure 6). This solution

has a natural interpretation as a bubble of deconfined plasma within the confined phase.

The plots shows two interesting trends. The first one is that the width and height of the

soliton both increases as ξ → ξ1 = 0.237 from above. The second one is that as ξ → ξ2, the

height of the soliton decreases, but the width of the soliton also increases. Hence width of

the soliton comes to a minimum at some value of ξ between ξ1 and ξ2.

One can define the width w of the localized soliton as a measure of the spread in x

over which the value of C1 drops to a specified fraction C∗ of it’s maximum Cb. As ξ → ξ1

the localized soliton becomes the semi-infinite soliton discussed in the previous section and

consequently the width of the soliton goes to infinity. It would be interesting to calculate

the change in the width of the soliton with ξ as ξ → ξ1. In this limit, Cb almost reaches

CIII. The equation of motion is given by,

2K(C1)C
′′

1 + 2K ′(C1)C
′2
1 = V ′(C1) (4.31)
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Figure 5: Plot of V (C1) showing the bounce solution below.
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Figure 6: Plot of C1(x) as a function of x at ξ = 0.245 (violet), ξ = 0.24 (red), ξ = 0.238 (green)

and ξ = 0.2375 (blue).

where C ′
1 = d

dx
C1, K ′(C1) = d

dC1
K(C1), and similarly V ′(C1) = d

dC1
V (C1). Expanding

K(C1), V (C1) around C1 = CIII, and using the fact that V ′(CIII) = 0, and C ′
1 will be small

and negligible near C1 = CIII (because CIII is a turning point), we get from equation(4.31)

d2

dx2
δC1 = A(CIII)δC1 (4.32)

where δC1 = CIII − C1 and A = V ′′(CIII)
2K(CIII)

.

Using the boundary conditions, δC1(0) = (CIII −Cb) and d
dx

δC1(0) = 0, one can solve

the above equation to obtain,

δC1 = (CIII − Cb)(cosh(
√

Ax) (4.33)
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If we define B = Cb − C∗, then the width w is given by,

1 +
B

CIII − Cb
= cosh(

√
Aw) (4.34)

Since CIII − Cb → 0 as ξ → ξ1, it follows that in this limit the leading ξ dependence of

CIII − Cb will be of the form CIII − Cb ∼ (ξ − ξ1)
a, where a could be any real positive

number. Putting this dependence back into the above equation, and solving in the w → ∞
limit, we get,

w ∝ − log(ξ − ξ1) (4.35)

Hence we see that the width of the soliton diverges logarithmically with ξ − ξ1.

5. Conclusion

In this paper we have a presented a o(N2) soliton solution of a confining gauge theory

which interpolates between the confining and deconfinement phases separated by a first

order phase transition. The soliton is a solution of the large N , long wavelength effective

action of the gauge theory expressed in terms of the thermal order parameter (Polyakov

line). The general three dimensional effective Lagrangian would have to contain higher

derivative terms to support a soliton solution and this would make the problem technically

very difficult. However, in the present work we have analyzed a simpler one dimensional

example. We have presented a qualitative discussion on the possible connection of this

model with a higher dimensional confining gauge theory which has a gravity dual. The

soliton that we have found numerically is a finite region of the deconfinement phase (plasma

kink/ball) with a positive surface tension at the phase boundary. The free energy density

is also a smooth function every where in space.

Even though the soliton solution is obtained in a thermal gauge theory formulated

in Euclidean spacetime it is reasonable to expect it to be a static solution in Lorentzian

spacetime at finite temperature.9 This fact can be inferred by observing that the bulk

solution can be analytically continued from Euclidean to Lorentzian spacetime. Given

these facts it is tempting to identify the phase boundary as dual to the horizon of the

blackhole. A more precise understanding of this correspondence will enable us to explore

the structure of blackholes, especially ‘inside the horizon’ and address very directly the

persistent question of the blackhole singularity.
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A. Analysis of the clumping in the eigenvalue distribution in finite time

In this appendix we will prove that if we give a small perturbation around phase I, ρ(θ, x)

never becomes 0 near the point θ = 0, at any finite x. Let us solve the equations of motion

for individual phase space points near θ = 0. Near θ = 0 we can make the approximation,

sin θ ∼ θ. The equations of motion can be written as,
(

ṗ

θ̇

)

= M(x)

(

p

θ

)

(A.1)

where,

M(x) =

(

0 2ξρ1(x)

1 0

)

(A.2)

Here we start by approximating ρ1(x) with with a step function such that

ρ1(x) = ρ1, x > 0 (A.3)

= 0, x < 0 (A.4)

The solution of the equation is given by the condition,

exp(−Mx)

(

p(x)

q(x)

)

=

(

p(0)

q(0)

)

(A.5)

If we look at the Fermi level given by, p̂±(0) = ±p0, then at ”time” x the position of the

Fermi level will be,

p̂±(x) =
±p0

cosh(
√

2ξxρ1)
(A.6)

As |ρ1(x)| < 1 , p̂±(x) does not reach 0 at any finite time. Similar result seems

to be true for a time dependent ρ1. Consequently, eigenvalue density function ρ(θ) =

p̂+(θ) − p̂−(θ) is always non-zero at the point θ = 0. Hence any gap in the eigen value

distribution can not open in finite time. However, the solution may asymptotically reach

a gapped phase.

B. Shock formation in the collective field equations and folds on the Fermi

surface

In this section we will show that the collective field equations develop shocks in finite time

which can be understood from the underlying phase space picture as the formation of folds

on the Fermi surface. The collective field equations may be derived from a classical theory

of fermions. Consider first the theory of free fermions. We are looking at the phase space

description of this theory. The motion of individual phase space points are described by

the equations,

θ̇ = p, ṗ = 0 (B.1)
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Figure 8: Fermi level

From the above equation we can determine the equation of motion for a particle on the

Fermi surface to be,

∂xp̂ + p∂θp̂ = 0 (B.2)

where p̂ denotes the value of p at any point on the Fermi surface.

Now if the profile of the Fermi surface is such that for each value of θ, there are exactly

two points lying on the Fermi surface, one on the upper and lower Fermi level each (like in

figure 7), then we have

∂xp̂± + p̂±∂θ p̂± = 0 (B.3)

where p̂± characterize the points on the upper and lower Fermi levels respectively. The

source free version of the collective equations in (4.3) are simply linear combination of the

above two equations (see [36]), governing the dynamics of p̂+ + p̂− and p̂+ − p̂−, which are

proportional to v and ρ respectively from (4.8).

This identification with the collective field equations is perfectly fine for a fluctuation

of the form shown in the figure 7. However because of the equation of the motion, points

of the curve which are higher, have greater velocity than the lower points, hence even if

we start with a simple profile like that given in figure 7, the profile changes due to the
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Figure 9: Phase space particles (red) at x ≈ 11.9 showing the match with Fermi surface (green)

in phase III.

unequal velocity of the various points lying on the Fermi level to a profile of the form given

in figure 8. In figure 8, where the profile becomes multi-valued, the identification is not as

before, since there are more than two values of p corresponding to the same value of x. For

instance, if at a point the Fermi profile has a multi valuedness of the ”order four”, that

is there are four values of p̂ corresponding to the same value of θ, then the equation for ρ

becomes

2πρ(θ) =

∫ p̂4

p̂3

dp U(p, θ) +

∫ p̂2

p̂1

dp U(p, θ) (B.4)

and similarly for the equation for ρv. One can easily see that one cannot derive the simple

collective field equations in this case. Hence the collective field equations do not describe

the dynamics of the Fermi surface at all times.

However we can still look at the the topmost value of p as p̂+ and the lowest value of

p as p̂−. In that case the equations governing the dynamics of p+ + p− and p̂+ − p̂− are

the same collective field equation throughout, but then we see clearly from figure 8. that

the values of these variables jumps at θ = θ0, and hence the θ derivative blows up at this

point. This jump will correspond to the shock of the collective field equations. Note that

the description in terms of the fermion phase space is always perfectly smooth since it is

after all the theory of free fermions.

In our case we are dealing with a 1 + 1 dimensional interacting Euclidean fermionic

theory given by a Lagrangian of one fermionic field Ψ(θ)

L =

∫

dθΨ†∂xΨ + |∂θΨ|2 + 2ξ

∫

dθdθ′Ψ†(θ)Ψ(θ) cos(θ − θ′)Ψ†(θ′)Ψ(θ′) (B.5)

These equations give rise to the equation of the form (4.3). The phase space arguments

discussed here will continue to hold even in this case again leading to shock formation in
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Figure 10: Phase space particles at x ≈ 11.6 showing shocks at around θ ≈ −0.8 and θ ≈ 0.8.

finite time (see figure 10). But the theory viewed as a theory of fermions will still be valid.
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